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Abstract: - The 22MnB5 steel is a hot stamping steel developed with the aim to satisfy the increasing request of 
the automotive industries to apply materials able to guarantee higher passive safety and weight reduction. The 
hot stamping process is an innovative forming technique in which the deformations are carried out at elevated 
temperature and allows to achieve high strength components. The experimental characterization of the material 
response, at different values of the main variables of process, may result both expensive and time consuming, 
but the mutual effects evaluation of the deformation parameters and the phase transformations are necessary to 
produce components within the desired properties. The developed model, by means of a neural network 
approach with a Bayesian framework, is able to predict the hardness and the specific microstructure of 22MnB5 
steel as a function of the main parameters that are fundamental in hot stamping processes, thus overcoming the 
lack of fit of the existing numerical models. 
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1 Introduction 

The 22MnB5 steel is a hot stamping steel 
developed in the last years from the steels 
manufacturers with the aim to satisfy the increasing 
request of the automotive industries to apply 
materials able to guarantee higher passive safety and 
weight reduction. 

The hot stamping process is an innovative 
forming technique in which the deformations is 
carried out at elevated temperature, when the steel is 
in its austenitic phase, and allows to achieve, finally, 
high strength steel components. The necessity to put 
inside the dies the hot steel and to form and quench 
it in only one step, makes the process strongly 
dependent from the forming temperature, the strain 
value and the cooling rate. The experimental 
characterization of the material response at different 
values of the main variables of process, may result 
both expensive and time consuming, but the 
evaluation of the mutual effects of the deformation 
parameters and the phase transformations is 
necessary to produce components with the desired 
properties [1-3].  

Recently different constitutive numerical models 
to evaluate the material response of 22MnB5 steel 

subjected to thermo-mechanical cycles that simulate 
the hot stamping conditions have been developed. 
As described in the following section, for each 
proposed constitutive model, it is possible to 
identify a range of thermo-mechanical parameters in 
which a lack of fit between the experimental and 
modelled data appears.  

The Neural Networks tool offers a forecasting 
method that can overcome the lack of fits of 
numerical models and moreover, can model the 
phase transformations phenomena influenced by 
strong non linear factors. Although there are some 
applications of neural network approach to predict 
the materials phase transformations under different 
thermal cycles, there is a failing of researches that 
apply this modelling tool considering 
thermomechanical cycles [4-6]. 

The aim of the conducted study is to develop a 
model able to predict the hardness and the specific 
microstructure of 22MnB5 steel as a function of 
main parameters that are influent in hot stamping 
processes using a neural network approach with a 
Bayesian framework. 
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2 Fundamentals 
Phase transformations occurring during thermo-

mechanical cycles may be well understood using 
quantitative and qualitative microstructural 
investigations, by recognizing existing phases and 
fractions of each phase. Furthermore the hardness 
level of each phase suggests to use this parameter to 
identify the phase heterogeneity.  

Hot stamping is a non-isothermal forming 
process for sheet metal alloys, where forming and 
quenching take place in one combined step. The 
best cooling rate for quenching 22MnB5 steel is 
determined by the conditions that avoid 
transforming the austenite into ferrite, pearlite and 
bainite.  

The boron content of 22MnB5 steel acts as 
hardening agent during thermo-mechanical 
treatments and provides a material with excellent 
hardness and strength. The quenching treatment, 
usually performed on these materials, determines 
the heterogeneous precipitation of boron carbide at 
the grain boundaries and also the boron segregation. 
The segregation phenomenon causes increasing 
hardenability of the material by suppressing the 
austenite to ferrite transformation. Substitutional 
solid solution elements, such as Mn, is known to 
only slightly influence the strength after quenching; 
however Mn is essential for securing hardenability 
[7-9].  

The prior austenite grain size is fundamental on 
beginning the diffusion transformations. When the 
austenite grain size becomes smaller, or the heating 
temperature becomes lower, the transformations into 
these phases take place quicker and, as a 
consequence, the cooling rate for the quenching 
must be higher.  

Based on these considerations, the complete 
modelling of these steels, when subjected to hot 
stamping processes, needs to start from a wide 
experimental database on the microstructural and 
mechanical effect of the main process parameters. 
The experimental reproduction of the hot stamping 
process conditions is achievable performing hot 
compression or tensile tests stopped at different 
strain levels and followed by different cooling paths. 
 
 
2.1 The existing numerical models 
The numerical description of the high temperature 
behaviours of hot stamping steels can take 
advantage of two main formulations, as reported in 
literature researches, the Voce-Kocks combined 
model and the Molinari-Ravichandran model [10].  

The Voce model is suitable for polycrystalline 
materials in which saturation stress appears at large 
deformations. Nevertheless this model is strain rate 
and temperature insensitive; the coupling of this 
formulation with the kinetic Kocks model provides 
a forecasting tool able to describe the mechanical 
behaviour of material considering both the influence 
of the strain rate and the temperature.  
The Molinari-Ravichandran (MR) model is based on 
a single internal variable that is related to the 
microstructural evolutions during the deformation 
process and it is strain rate and temperature 
sensitive.  
The main disadvantage of both models is their 
inability to include two aspects, moreover evidenced 
from the experimental results, as the static thermal 
recovery and the dynamic recrystallization. 
Furthermore, the forecasting accuracy of each 
model is strongly dependent of the considered range 
of temperature or strain and requires the evaluation 
of many independent adjustable parameters.  
The fitness of Voce-Kocks model increases at low 
temperature and strain rate values but at elevate 
temperature the model is suitable when the strain 
rate increase. The MR model capability to fit the 
experimental data decreases at elevate temperature 
and this occurrence appears at all the strain values. 
These forecasting gap suggested to develop a 
microstructural prediction tool that overcomes the 
necessity to translate all the complexities of the 
considered system into constitutive formulations. 
 
 
2.2 The Neural Networks technique 
The artificial neural network approach constitutes a 
regression analysis method in which a flexible non 
linear function is fitted to the experimental data. 
This tool is able to capture complex relationships 
characterizing phase transformations, without 
requiring the mathematical descriptions of 
phenomena.  
The Bayesian framework applied to the neural 
model is able to take into account the fitting 
uncertainty. The method calculates a probability 
distribution of the set of neural network weights and 
provides the outputs error bars, defining the 
applicability range of neural model. Furthermore, 
the significance of the input variable is 
automatically quantified.  
Considering the Kolmogorov theorem, the 
complexity of each system can be captured with a 
neural network model containing a single hidden 
layer; the flexibility of model is attained operating 
on the number of the hidden units. The general 
model formulation considering a feed-forward 
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architecture with one hidden layer and i hidden units 
is:  
 
yk=∑ wki

(2)
i hi+θk

(2)                                                 (1) 
where hi= tanh �∑ wij

(1)
j xj+θi

(1)�                           (2) 
 
xj are the inputs, yk are the outputs, θ are the bias 
corresponding to each neural node, w are the neural 
weights, the superscript (1) is referred to the hidden 
layer, whereas the superscript (2) is referred to the 
output layer. The equation (1) expresses the output 
of the neural model, whereas the equation (2) 
expresses the transfer function. The combine of 
several hyperbolic tangents confers to the model the 
ability to capture non linear relationship between 
inputs and outputs [11-14].  
The number of input, output and hidden nodes and 
their connections defines the architecture of the 
neural model. The Bayesian framework foresees 
that the weights and biases of the network are 
assumed to be random variables with specified 
distributions and provides a method to improve the 
generalization capability of neural network usually 
called regularization.  
Backpropagation algorithm is able to train 
multilayer feed-forward networks with 
differentiable transfer functions to perform function 
approximation, pattern association, and pattern 
classification. There are several backpropagation 
training algorithms; among them, the Bayesian 
regularization one consists in a modification of the 
Levenberg-Marquardt training algorithm to produce 
networks that generalize well reducing the difficulty 
of determining the optimum network architecture.  
The Bayesian regularization involves modifying of 
the performance function, which normally is the 
sum of squares of the network errors on the training 
set. The formulation of the Bayesian performance 
function is depicted in the following equation (3): 
 
MSEreg= γ MSE+�1-γ� MSW                               (3) 
 
in which MSEreg is the modified performance 
function, γ is the performance ratio, MSE is the 
typical performance function mean squared error 
given by: 
 
MSE = 1

N
 ∑ (ei)2N

i=1  = 1
N

 ∑ �ti − yi�
2N

i=1                  (4) 
 
in which ti − yi represents the difference between 
the target value and the output value and MSW is 
the mean of the sum of squares of the network 
weights: 

 
MSW = 1

n
 ∑ �wj�

2n
i=1                                              (5) 

 
The determination of the optimum value for the 
performance ratio parameter (γ) allows to generate a 
network that best fits the training data. In effect, if 
this parameter is too large, it may get overfitting and 
if the ratio is too small, the network will not 
adequately fit the training data.  
The described network architecture has been 
implemented using the MATLAB neural network 
toolbox that provides some routines that 
automatically sets the regularization parameters. 
The Bayesian regularization work well if the input 
and the target data are ranged in [-1;1]. Therefore, 
the inputs and the targets have been normalized 
within the range [-1;1] before training as follows: 
 
xnorm=2 x−xmin

xmax−xmin
 -1                                                (6) 

 
where xnorm is the normalized value of each 
parameter, x, xmin and xmax are respectively the 
measured, the minimum and the maximum values 
for the considered parameter. In order to avoid the 
possibility of overfitting data, the experimental data 
are randomly divided into two groups respectively 
called training set and test set. The model has been 
implemented considering the only training data set 
constituted by 75% of the experimental data and it 
has been validated considering the test data set 
constitute by 25% of the experimental data. 
 
 
3 Application of Model and Results 

Continuous Cooling Transformations (CCT) 
diagrams describe exhaustively thermal 
transformation behaviour of steel; therefore, CCT 
diagrams valued considering hot prestrain (HPS) 
conditions is able to describe successfully the 
thermo-mechanical behaviour of steel. There are 
several studies that apply the neural network 
approach to evaluating the CCT diagrams of steels. 
All the methods use, as input data, the steel 
chemical composition and the cooling rate and in 
some cases also the austenization temperature; these 
method are able to provide as output the starting 
temperatures of the phase transformations or the 
material hardness values. The purpose of this study 
is to provide a forecasting tool that, for a selected 
steel, is able to supply the thermo-mechanical 
material behaviours; therefore the selection of the 
input data to define the neural network model has 
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been focused on the selection of representative 
parameters of the thermo-mechanical cycles.  

The topological definition of neural model starts 
from a wide experimental work that planned the 
carrying out of several hot tensile tests, followed by 
microhardness and micrographic analyses, aimed to 
the determination of CCT curves under hot prestrain 
conditions [15 – 16]. From these studies 112 data 
useful for training and testing the defined neural 
network have been extracted. Others data have been 
selected from literature, finally 155 experimental 
data have been collected; among them, 115 have 
been used for training and 40 for testing the selected 
neural networks [17]. The main results of the 
experimental campaigns suggested the parameters to 
select as inputs and outputs of the neural network 
model. In particular, the factors that influence the 
phase transformations have been selected as input; 
six parameters have been considered as influencing 
parameters: the austenization temperature, the 
soaking time at the austenization temperature, the 
prestrain percentage, the prestrain temperature, the 
strain rate and the cooling rate. The first two 
parameters have been selected in order to take into 
account the effect of the prior austenite grain size on 
the phase transformation; effectively, as suggested 
by Umemoto and Owen’s [18] and Yang and 
Bhadeshia [19], the phase transformation from the 
austenite into martensite is strongly associated with 
the austenite grain boundaries, and therefore the 
coarsening of the austenite grain promotes the 
occurrence of diffusive transformations.  

As outputs of the neural network, 5 parameters, 
that are evaluated in all the experimental works, 
were assigned as the Vickers microhardness, the 
martensite start temperature (Ms), the Martensite 
finish temperature (Mf), the percentage of 
martensite and the percentage of bainite. Hence 
three different neural networks have been designed; 
the topology of each of them is depicted in figure 1.   

In order to achieve a better readability of the 
obtained results, the outputs of each neural networks 
has been post-processed; the linear regression 
between the network response and the target data 
allowed to evaluate the fitting capability of model to 
the experimental data in the training and in the 
testing phases. The evaluation of the regression 
coefficient R provided the degree of correlation 
between the experimental and the foreseen data. In 
figure 2 and 3 the linear regression analysis for all 
the output data are displayed. The results evidenced 

that the complexity achieved, considering 6 hidden 
layers, is already enough to describe the system. 

In effect no significant predicting capability 
improvement has been observed considering a 
higher number of the hidden layers. 

 
Figure 1. Designed neural networks, 6-6-5, 6-12-

5, 6-20-5. 

 
Figure 2. Linear regression between the network 

response and the target in the training and testing 
phases. Results for HV, Ms and Mf. 

 
The post-processing of the neural network 

outputs evidenced a good agreement between the 
experimental and the foreseen data only for three 
output parameters: the HV, Mf and Ms values. 
These parameters reach a correlation coefficient 
value near to 1. A light decreasing of the R value 
has been observed in the post-processing of the 
testing outputs. 
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Figure 3. Linear regression between the network 

response and the target in the training and testing 
phases. Results for percentage of Bainite and 

percentage of Martensite. 
 
The small difference between R values for a 

given parameters indicate a good generalization 
capability of the neural model. A noisy result was 
obtained for the output parameters percentage of 
bainite and percentage of martensite. As shown in 
figure 3, the correlation between the experimental 
and the trained data decreased. This results is 
correlated to the difficult to distinguish and 
therefore to evaluate the percentage of diffusive 
phases as bainite, pearlite and ferrite. This difficult 
rebounds on the prediction accuracy of the 
percentage of martensite. 
 
4 Conclusions 
A model able to predict the hardness and the 
specific microstructure of 22MnB5 steel as a 
function of main parameters that are fundamental in 
hot stamping processes, using a neural network 
approach with a Bayesian framework, has been 
designed.  
Three different neural networks, with topology 6-6-
5, 6-12-5, 6-20-5, have been considered. In order to 
achieve a better readability of the obtained results, 
the outputs of each neural networks have been post-
processed.  
The linear regression between the network response 
and the target data allowed to evaluate the fitting 
capability of model to the experimental data in the 
training and in the testing phases. 
The results evidenced that the complexity achieved 
considering 6 hidden layer is already full enough to 
describe the system.  

A good agreement between the experimental and the 
foreseen data was found only for three output 
parameters: the HV, Mf and Ms values.  
A noisy result was obtained for the output 
parameters percentage of bainite and percentage of 
martensite; this was attributable to the difficult to 
distinguish and therefore to evaluate the percentage 
of diffusive phases as bainite, pearlite and ferrite. 
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